Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Aging (Albany NY) ; 162024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38696318

RESUMEN

Recently, there has been growing interest in using cell therapy through core decompression (CD) to treat osteonecrosis of the femoral head (ONFH). Our study aimed to investigate the effectiveness and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in treating steroid-induced ONFH. We constructed a steroid-induced ONFH rabbit model as well as dexamethasone (Dex)-treated bone microvascular endothelial cells (BMECs) model of human femoral head. We injected hUCMSCs into the rabbit femoral head via CD. The effects of hUCMSCs on steroid-induced ONFH rabbit model and Dex-treated BMECs were evaluated via micro-CT, microangiography, histology, immunohistochemistry, wound healing, tube formation, and western blotting assay. Furthermore, we conducted single-cell RNA sequencing (scRNA-seq) to examine the characteristics of endothelial cells, the activation of signaling pathways, and inter-cellular communication in ONFH. Our data reveal that hUCMSCs improved the femoral head microstructure and bone repair and promoted angiogenesis in the steroid-induced ONFH rabbit model. Importantly, hUCMSCs improved the migration ability and angioplasty of Dex-treated BMECs by secreting COL6A2 to activate FAK/PI3K/AKT signaling pathway via integrin α1ß1.

2.
Sci Rep ; 14(1): 8769, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627531

RESUMEN

Multilayer networks composed of intralayer edges and interlayer edges are an important type of complex networks. Considering the heterogeneity of nodes and edges, it is necessary to design more reasonable and diverse community detection methods for multilayer networks. Existing research on community detection in multilayer networks mainly focuses on multiplexing networks (where the nodes are homogeneous and the edges are heterogeneous), but few studies have focused on heterogeneous multilayer networks where both nodes and edges represent different semantics. In this paper, we studied community detection on heterogeneous multilayer networks and proposed a motif-based detection algorithm. First, the communities and motifs of multilayer networks are defined, especially the interlayer motifs. Then, the modularity of multilayer networks based on these motifs is designed, and the community structure of the multilayer network is detected by maximizing the modularity of multilayer networks. Finally, we verify the effectiveness of the detection algorithm on synthetic networks. In the experiments on synthetic networks, comparing with the classical community detection algorithms (without considering interlayer heterogeneity), the motif-based modularity community detection algorithm can obtain better results under different evaluation indexes, and we found that there exists a certain relationship between motifs and communities. In addition, the proposed algorithm is applied in the empirical network, which shows its practicability in the real world. This study provides a solution for the investigation of heterogeneous information in multilayer networks.

3.
Gene ; 916: 148449, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38588931

RESUMEN

Germline-specific genes are usually activated in cancer cells and drive cancer progression; such genes are called cancer-germline or cancer-testis genes. The RNA-binding protein DAZL is predominantly expressed in germ cells and plays a role in gametogenesis as a translational activator or repressor. However, its expression and role in non-small cell lung cancer (NSCLC) are unknown. Here, mining of RNA-sequencing data from public resources and immunohistochemical analysis of tissue microarrays showed that DAZL was expressed exclusively in testis among normal human tissues but ectopically expressed in NSCLC tissues. Testis and NSCLC cells expressed the shorter and longer transcript variants of the DAZL gene, respectively. Overexpression of the longer DAZL transcript promoted tumor growth in a mouse xenograft model. Silencing of DAZL suppressed cell proliferation, colony formation, migration, invasion, and cisplatin resistance in vitro and tumor growth in vivo. Quantitative proteomic analysis based on tandem mass tag and Western blot analysis showed that DAZL upregulated the expression of JAK2 and MCM8. RNA-binding protein immunoprecipitation assays showed that DAZL bound to the mRNA of JAK2 and MCM8. The JAK2 inhibitor fedratinib attenuated the oncogenic outcomes induced by DAZL overexpression, whereas silencing MCM8 counteracted the effects of DAZL overexpression on cisplatin-damaged DNA synthesis and half-maximal inhibitory concentration of cisplatin. In conclusion, DAZL was identified as a novel cancer-germline gene that enhances the translation of JAK2 and MCM8 to promote NSCLC progression and resistance to cisplatin, respectively. These findings suggest that DAZL is a potential therapeutic target in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Janus Quinasa 2 , Neoplasias Pulmonares , Proteínas de Unión al ARN , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Masculino , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Progresión de la Enfermedad , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Ratones Endogámicos BALB C
4.
Int Immunopharmacol ; 130: 111755, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38408417

RESUMEN

A growing amount of epidemiological evidence proposes diabetes mellitus (DM) to be an independent risk factor for osteoarthritis (OA). Sirtuin 3 (SIRT3), which is mainly located in mitochondria, belongs to the family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases and is involved in the physiological and pathological processes of cell regulation. The aim of this study was to investigate the effects of SIRT3 on diabetic OA and underlying mechanisms in the prevention of type 2 DM (T2DM)-induced articular cartilage damage. High-fat and high-sugar diets combined with streptozotocin (STZ) injection were used for establishing an experimental T2DM rat model. The destabilization of medial meniscus (DMM) surgery was applied to induce the rat OA model. Primary rat chondrocytes were cultivated with a concentration of gradient glucose. Treatment with intra-articular injection of SIRT3 overexpression lentivirus was achieved in vivo, and intervention with SIRT3 knockdown was performed using siRNA transfection in vitro. High glucose content was found to activate inflammatory response, facilitate apoptosis, downregulate autophagy, and exacerbate mitochondrial dysfunction in a dose-dependent manner in rat chondrocytes, which can be deteriorated by SIRT3 knockdown. In addition, articular cartilage damage was found to be more severe in T2DM-OA rats than in DMM-induced OA rats, which can be mitigated by the intra-articular injection of SIRT3 overexpression lentivirus. Targeting SIRT3 is a potential therapeutic strategy for the alleviation of diabetic OA.


Asunto(s)
Condrocitos , Osteoartritis , Sirtuina 3 , Animales , Ratas , Apoptosis , Autofagia , Cartílago Articular/patología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Osteoartritis/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
5.
Nat Metab ; 6(1): 78-93, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191667

RESUMEN

The coexistence of brown adipocytes with low and high thermogenic activity is a fundamental feature of brown adipose tissue heterogeneity and plasticity. However, the mechanisms that govern thermogenic adipocyte heterogeneity and its significance in obesity and metabolic disease remain poorly understood. Here we show that in male mice, a population of transcription factor jun-B (JunB)-enriched (JunB+) adipocytes within the brown adipose tissue exhibits lower thermogenic capacity compared to high-thermogenic adipocytes. The JunB+ adipocyte population expands in obesity. Depletion of JunB in adipocytes increases the fraction of adipocytes exhibiting high thermogenic capacity, leading to enhanced basal and cold-induced energy expenditure and protection against diet-induced obesity and insulin resistance. Mechanistically, JunB antagonizes the stimulatory effects of PPARγ coactivator-1α on high-thermogenic adipocyte formation by directly binding to the promoter of oestrogen-related receptor alpha, a PPARγ coactivator-1α downstream effector. Taken together, our study uncovers that JunB shapes thermogenic adipocyte heterogeneity, serving a critical role in maintaining systemic metabolic health.


Asunto(s)
Resistencia a la Insulina , Ratones , Masculino , Animales , PPAR gamma/metabolismo , Adipocitos Marrones/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Dieta Alta en Grasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Chem Biol Interact ; 390: 110890, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38278314

RESUMEN

Osteoarthritis (OA) is the most common type of arthritis and is an age-related joint disease that is particularly prevalent in subjects over 65 years old. The chronic rise of senescent cells has a close correlation with age-related diseases such as OA, and the senescence-associated secretory phenotype (SASP) is implicated in OA cartilage degeneration pathogenesis. Sirtuin 6 (SIRT6) is likely to be a key senescence-related regulator. Fisetin (FST) is a natural flavonol of the flavonoid family that is recommended as a senolytic drug to extend health and lifespan. However, the potential chondroprotective effects of FST on OA rats are largely unclarified. The aim of this study is to investigate the ameliorative effects of FST on OA joint cartilage and the relationship with SIRT6 and the detailed mechanisms from anti-inflammatory and anti-senescent perspectives. Rats were subjected to destabilization of the medial meniscus (DMM) surgery as a means of inducing the experimental OA model in vivo. Chondrocytes treated with IL-1ß were utilized for mimicking the OA cell model in vitro. Intra-articular injection of FST, OSS_128,167 (OSS, SIRT6 inhibitor), and MDL800 (MDL, SIRT6 agonist) in vivo or administering them in IL-1ß-induced rat chondrocytes in vitro were performed in order to determine the effects FST has on OA and the link with SIRT6. This study found SIRT6 level to be negatively correlated with OA severity. SIRT6 downregulation was validated in the joint cartilages of DMM rats and IL-1ß-treated chondrocytes. It was also notably demonstrated that FST can activate SIRT6. Both the administration of FST and activation of SIRT6 using MDL were found to rescue cartilage erosion, decrease extracellular matrix (ECM) degradation, prevent cartilage from apoptosis, and improve detrimental senescence-related phenotype. The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1ß-stimulated chondrocytes were also confirmed. SIRT6 loss occurs in articular cartilage in OA pathogenesis, which is linked to aging. FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6.


Asunto(s)
Cartílago Articular , Osteoartritis , Sirtuinas , Humanos , Ratas , Animales , Anciano , Condrocitos , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Flavonoles/farmacología , Flavonoles/metabolismo , Interleucina-1beta/metabolismo , Cartílago Articular/metabolismo , Sirtuinas/metabolismo , Senescencia Celular
7.
IEEE Sens J ; 23(9): 10140-10148, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38046935

RESUMEN

Many prevalent heart diseases can be indicated by the features of the jugular venous pulse (JVP), an efficacious indicator of right heart health. However, JVP dynamics are not widely utilized in clinical settings as its observation and sensing remain cumbersome. Non-invasive measures of cardiac behavior, including the JVP, are of growing interest to enable continuous and at-home monitoring of cardiac disorders. In this work, we propose a wearable near-field radio-frequency (RF) sensor affixed with a neck collar on the clavicle over the internal jugular vein to enable non-invasive JVP sensing. We employed a complex vector injection signal processing method to extract repeatable JVP waveform features in multiple postures. With a 21-subject human study, we demonstrated morphologically consistent JVP sensing with consistent a-, c-, and v-wave feature timings, benchmarked by synchronous electrocardiogram and phonocardiogram. Further, inter-postural experiments demonstrated the capability of the proposed system to quantify morphological changes to the JVP which are present in many cardiac disorders. The results of this work suggest the proposed near-field RF sensor is capable of non-invasive JVP monitoring, potentially enabling improved sensing in both clinical and ambulatory environments.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38032275

RESUMEN

Radiative cooling, achieved by selectively emitting thermal radiation to outer space, holds great promise for addressing global energy challenges and mitigating the effects of climate change. However, most radiative cooling materials face limitations in effectively cooling in high-heat environments, and their performance deteriorates significantly with prolonged outdoor use. These shortcomings restrict their widespread application in various settings. To address this, we draw inspiration from the unique biostructure of dictyophora and propose a novel hollow@porous radiative cooling film by integrating hollow microparticles and porous polymer. The fabricated hollow@porous flexible film exhibits high sunlight reflection (93.7%), strong infrared emissivity (89.1%), as well as ultralow thermal conductivity (17.56 mW/m k). The daytime cooling performance of the prepared cooler is experimentally demonstrated with a marked temperature decrease to 17.4 °C under a peak solar intensity of 980 W/m2. Furthermore, the unique hollow@porous structure also strengthens the film's long-term durability by incorporating weather resistance and self-cleaning properties, which ensures stable and efficient radiative cooling performance even in harsh climatic conditions. This advancement in radiative cooling materials opens up new possibilities for thermal management, energy conservation, and cooling of solar panels, engine components, electronic equipment, new energy batteries, etc.

9.
Data Brief ; 50: 109499, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663770

RESUMEN

The tumor suppressor p53 exerts its role mainly as a transcription factor. The TP53 gene, which encodes the p53 protein, is the most commonly mutated gene in human cancers, particularly triple negative breast cancer (TNBC). Variations in the TP53 gene occur mainly in exons 5-8 and result in missense mutations in the DNA-binding domain of the p53 protein that alter DNA binding specificity. To identify the target genes of mutant p53, we performed chromatin immunoprecipitation followed by DNA microarray (ChIP-chip). Briefly, the TNBC cell line MDA-MB-468 containing the endogenous p53-R273H mutation (the arginine residue at position 273 is mutated to a histidine) was cross-linked with 1% formaldehyde and ultrasonically sheared to generate chromatin fragments in a range of 200∼1000 bp. An aliquot of the sheared chromatin was kept as input, and the other chromatin was precipitated with a p53 monoclonal antibody. DNA was purified from the precipitated chromatin and the unprecipitated chromatin (i.e., input), amplified, and labeled with Cy5 (ChIP DNA) or Cy3 (input DNA). Cy5- and Cy3-labeled DNA samples were cohybridized with the NimbleGen Human ChIP-chip 2.1 M Deluxe Promoter Array. The raw and analyzed data are described in this article. They are useful for identifying target genes and consensus binding motifs of the p53 R273H mutant and for further clarifying the molecular mechanism underlying the oncogenic activity of the p53 mutant.

10.
Data Brief ; 50: 109500, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663774

RESUMEN

Osteosarcoma is the most common primary malignant bone tumor with a high risk of metastasis and recurrence. Metabolic reprogramming is a hallmark of osteosarcoma and other cancers and is associated with genetic and epigenetic alterations. RUNX2 is an important transcription factor for osteoblastic differentiation, and aberrant expression of the gene contributes to the development and progression of osteosarcoma. To identify the effects of RUNX2 silencing on transcriptomic and metabolomic profiles in osteosarcomas, we generated SJSA-1 osteosarcoma cells stably expressing RUNX2 shRNA and SJSA-1 cells stably expressing scramble shRNA and analyzed transcriptome and metabolome profiles in the two cell types using Illumina NovaSeq 6000 and ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry, respectively. The datasets can be used by researchers to identify novel targets of RUNX2 and elucidate the role and underlying mechanism of RUNX2 in osteosarcoma pathogenesis and metabolic reprogramming.

11.
Chem Biol Interact ; 384: 110724, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37741535

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is a common joint disease characterized by inflammation and cartilage degeneration. Accumulating evidences support that endoplasmic reticulum (ER) stress induced OA chondrocytes apoptosis. The hypoglycemic and anti-inflammatory properties render Dapagliflozin (DAPA) effective in reducing ER stress on cells. However, its impact and potential mechanisms on the OA pathology are still obscure. The present study aimed to investigate whether DAPA attenuates ER stress in chondrocytes by activating sirt1 and delays the progression of OA. METHODS: In vitro, we first investigated the effect of DAPA on chondrocytes viability with IL-1ß or not for 24 or 48 h. Then, chondrocytes were treated with 10 ng/ml IL-1ß and 10 µM dapagliflozin with10 µM thapsigargin, 5 µM SRT1460 or not. Chondrocytes apoptosis in each group were detected by Tunel staining and flow cytometric. Immunofluorescence staining was applied to quantify the expression levels of cleaved caspase-3, Sirt1 and CHOP in chondrocytes. Inhibition of ER stress in chondrocytes associated with sirt1 activation were verified by PCR and western blotting. In addition, the effects of DAPA on cartilage were validated by a series of experiments in OA rat model, such as micro-CT, histological and immunohistochemical assay. RESULTS: The data demonstrated that DAPA alleviates IL-1ß induced ER stress related chondrocytes apoptosis, and PCR and western blotting data confirmed that DAPA inhibits the PERK-eIF2α-CHOP pathway by activating Sirt1. Besides, immunohistochemical results showed that DAPA enhanced the expression of Sirt1 and Collagen II in OA rats, and inhibited the expression of CHOP and cleaved caspase-3. Meanwhile, histological staining and micro-CT photography also confirmed that DAPA alleviated inflammation and cartilage degeneration in OA rat. CONCLUSIONS: The study demonstrated the relationship of ER stress and inflammation in the progression of OA, and verified that DAPA could inhibit PERK-eIF2α-CHOP axis of the ER stress response by activating Sirt1 in IL-1ß treated rat chondrocytes and potentially prevent the OA development.

12.
Drug Discov Ther ; 17(4): 248-256, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599085

RESUMEN

Ferroptosis is a form of regulated cell death (RCD) triggered by iron-dependent lipid peroxidation and is closely associated with the occurrence and progression of hepatocellular carcinoma (HCC). The lncRNA SNHG1 (small nucleolar RNA host gene 1) has been shown to play an oncogenic role in HCC, but its function in RCD other than autophagy and apoptosis is still unknown. Here, we investigated the correlation between SNHG1 and 156 typical markers of five RCD types based on RNA sequencing data from The Cancer Genome Atlas database and showed the negative regulators of ferroptosis FANCD2 (Fanconi anemia complementation group D2) and G6PD (glucose-6-phosphate dehydrogenase) to be the most highly and fifth most highly correlating factors with SNHG1, respectively. A competitive endogenous RNA network of SNHG1 - miR-199a-5p/3p - FANCD2/G6PD was constructed bioinformatically. In vitro experiments showed that overexpression of the miR-199a precursor led to a decrease in expression of SNHG1, FANCD2, and G6PD, whereas knockdown of SNHG1 decreased expression of FANCD2 and G6PD but increased levels of miR-199a-5p and miR-199a-3p in HCC cells (Huh7 and HepG2). In addition, knockdown of SNHG1 increased erastin-mediated ferroptosis, iron accumulation, and lipid peroxidation. These results suggest that SNHG1 upregulates FANCD2 and G6PD by sponging miR-199a, thereby inhibiting ferroptosis in HCC. Moreover, a signature based on expression of SNHG1, FANCD2, and G6PD was identified as being associated with overall survival and the immunological microenvironment in HCC. Collectively, this study identified the SNHG1-miR-199a-FANCD2/G6PD axis in HCC, which is a potential marker for the prognosis and therapy of this tumor.


Asunto(s)
Carcinoma Hepatocelular , Anemia de Fanconi , Ferroptosis , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , Ferroptosis/genética , ARN Largo no Codificante/genética , Glucosafosfato Deshidrogenasa/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Microambiente Tumoral , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi
13.
J Cell Mol Med ; 28(5): e17895, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525480

RESUMEN

Immune checkpoint inhibitors (ICIs) therapy have revolutionized advanced lung cancer care. Interestingly, the host responses for patients received ICIs therapy are distinguishing from those with cytotoxic drugs, showing potential initial transient worsening of disease burden, pseudoprogression and delayed time to treatment response. Thus, a new imaging criterion to evaluate the response for immunotherapy should be developed. ICIs treatment is associated with unique adverse events, including potential life-threatening immune checkpoint inhibitor-related pneumonitis (ICI-pneumonitis) if treated patients are not managed promptly. Currently, the diagnosis and clinical management of ICI-pneumonitis remain challenging. As the clinical manifestation is often nonspecific, computed tomography (CT) scan and X-ray films play important roles in diagnosis and triage. This article reviews the complications of immunotherapy in lung cancer and illustrates various radiologic patterns of ICI-pneumonitis. Additionally, it is tried to differentiate ICI-pneumonitis from other pulmonary pathologies common to lung cancer such as radiation pneumonitis, bacterial pneumonia and coronavirus disease of 2019 (COVID-19) infection in recent months. Maybe it is challenging to distinguish radiologically but clinical presentation may help.

14.
Chem Commun (Camb) ; 59(58): 8993-8996, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37401443

RESUMEN

The atom transfer radical cyclisation of unactivated alkyl bromides was realized by using a catalytic system of CuBr and Me6-TREN. This protocol is applicable to the preparation of five-membered rings from unsaturated primary and secondary bromides.

15.
Mutat Res ; 827: 111828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37437507

RESUMEN

BACKGROUND: The role of cuproptosis, an emerging cell death pathway that makes a remarkable contribution to tumor progression, remains elusive in osteosarcoma (OS), in addition to its regulator, including long-no-coding RNAs (lncRNAs) that are also a critical factor for fueling OS. METHODS: Transcriptome and clinical data from 70 normal human bone tissue samples and 84 frozen clinical osteosarcoma samples were included in this study. Cuproptosis-associated lncRNAs (CRlncs) were identified through differential expression and co-expression analyses. Univariate Cox regression was performed to screen for prognostic lncRNAs, then we used least absolute shrinkage and selection operator regression to distinguish prognosis-related CRlncs (AC083900.1 and RP11-283C24.1) for modeling the CRlncs prognostic signature (CLPS) by multivariate Cox regression using the stepwise method. CLPS performance was tested by independent prognostic analyses, survival curve and receiver operating characteristic (ROC) curve. In addition, the molecular and immune mechanisms that underlie the unfavorable prognosis of CLPS-identified high-risk group were elucidated. RESULT: AC083900.1 and RP11-283C24.1 have been identified as the most important CRlncs for OS progression (hazard ratio: 3.498 and 2.724, respectively), and the derived CLPS demonstrated outstanding performance for the prediction of OS prognosis (AUC of 0.799 and 0.778 in the training and test sets, both adj-p < 0.05 in survival curve). As was anticipated, CLPS also outperformed a recent clinical prognostic approach that only achieved an AUC of 0.682 [metastasis]. It is notable that AC083900.1 progressed OS metastasis, evidenced by its high expression in metastatic OS, its high correlation to metastasis-related genes, and its high AUC of 0.683 for the prediction of metastasis. Mechanistically, AC083900.1 and RP11-283C24.1 dysregulated many critical biological processes regarding humoral immune response, immunoglobulin complex, etc.; while reducing the infiltration of many cytotoxic immune cells (B-cells, TIL, neutrophils, etc.). It is encouraging that BMS-509744 and KIN001-135 demonstrated high therapeutic implications for CLPS-identified high-risk OS, and the low-risk counterpart was sensitive to SB-216763. Quantitative RT-PCR analysis showed that both AC083900.1 and RP11-283C24.1 were significantly upregulated in different osteosarcoma cell lines. CONCLUSION: This study elucidated the roles and mechanisms of AC083900.1 and RP11-283C24.1 in the development of OS, fostering a reliable prognostic approach and treatment for OS patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Osteosarcoma/genética , Línea Celular , Neoplasias Óseas/genética , Pronóstico
16.
Sensors (Basel) ; 23(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37430647

RESUMEN

Dyspnea is one of the most common symptoms of many respiratory diseases, including COVID-19. Clinical assessment of dyspnea relies mainly on self-reporting, which contains subjective biases and is problematic for frequent inquiries. This study aims to determine if a respiratory score in COVID-19 patients can be assessed using a wearable sensor and if this score can be deduced from a learning model based on physiologically induced dyspnea in healthy subjects. Noninvasive wearable respiratory sensors were employed to retrieve continuous respiratory characteristics with user comfort and convenience. Overnight respiratory waveforms were collected on 12 COVID-19 patients, and a benchmark on 13 healthy subjects with exertion-induced dyspnea was also performed for blind comparison. The learning model was built from the self-reported respiratory features of 32 healthy subjects under exertion and airway blockage. A high similarity between respiratory features in COVID-19 patients and physiologically induced dyspnea in healthy subjects was observed. Learning from our previous dyspnea model of healthy subjects, we deduced that COVID-19 patients have consistently highly correlated respiratory scores in comparison with normal breathing of healthy subjects. We also performed a continuous assessment of the patient's respiratory scores for 12-16 h. This study offers a useful system for the symptomatic evaluation of patients with active or chronic respiratory disorders, especially the patient population that refuses to cooperate or cannot communicate due to deterioration or loss of cognitive functions. The proposed system can help identify dyspneic exacerbation, leading to early intervention and possible outcome improvement. Our approach can be potentially applied to other pulmonary disorders, such as asthma, emphysema, and other types of pneumonia.


Asunto(s)
Asma , COVID-19 , Humanos , COVID-19/diagnóstico , Esfuerzo Físico , Disnea , Benchmarking
17.
Chem Biol Interact ; 382: 110602, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37302459

RESUMEN

Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with extremely poor prognosis. Gambogenic acid (GNA), one of the major bioactive ingredients isolated from Gamboge, has been shown to possess a multipotent antitumor effect, its activity on OS remains unclear yet. In this study, we found that GNA could trigger multiple cell death modalities, including ferroptosis and apoptosis in human OS cells, reduce the cell viability, inhibit the proliferation and invasiveness. Furthermore, GNA provoked oxidative stress leading to GSH depletion-inducing ROS generation and lipid peroxidation, altered iron metabolism represented by the induction of labile iron, mitochondrial membrane potential decreased, mitochondrial morphological changed, decreased the cell viability. In addition, ferroptosis inhibitors (Fer-1) and apoptosis inhibitors (NAC) can partially reversed GNA' s effects on OS cells. Further investigation showed that GNA augmented the expression of P53, bax, caspase 3 and caspase 9 and decreased the expression of Bcl-2, SLC7A11 and glutathione peroxidase-4 (GPX4). In vivo, GNA was showed to delay tumor growth significantly in axenograft osteosarcoma mouse model. In conclusion, this study reveals that GNA simultaneously triggers ferroptosis and apoptosis in human OS cells by inducing oxidative stress via the P53/SLC7A11/GPX4 axis.


Asunto(s)
Osteosarcoma , Proteína p53 Supresora de Tumor , Animales , Ratones , Niño , Humanos , Adolescente , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Muerte Celular , Oxidación-Reducción , Transducción de Señal , Osteosarcoma/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
18.
Sci Rep ; 13(1): 6027, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055422

RESUMEN

Conventional compost sludge has a long fermentation period and is not nutrient rich. Potassium-rich mining waste was used as an additive for aerobic composting of activated sludge to make a new sludge product. The effects of different feeding ratios of potassium-rich mining waste and activated sludge on the physicochemical properties and thermophilic bacterial community structure during aerobic composting were investigated. The results showed that potassium-rich waste minerals contribute to the increase in mineral element contents; although the addition of potassium-rich waste minerals affected the peak temperature and duration of composting, the more sufficient oxygen content promoted the growth of thermophilic bacteria and thus shortened the overall composting period. Considering the requirements of composting temperature, it is recommended that the addition of potassium-rich waste minerals is less than or equal to 20%.


Asunto(s)
Compostaje , Temperatura , Potasio , Aguas del Alcantarillado/microbiología , Bacterias , Suelo
19.
Int J Oncol ; 62(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37052262

RESUMEN

The gene encoding the tumor suppressor p53 is the most frequently mutated gene in cancers. However, p53 mutation is rare in acute myeloid leukemia (AML), and p53 is inactivated predominantly by aberrant expression of p53 regulators (such as MDM2). A previous study by the authors revealed that the ZCCHC10 protein suppressed MDM2­mediated degradation of the p53 protein in lung cancer. However, the expression and role of the ZCCHC10 gene in AML have not been investigated. In the present study, it was found that ZCCHC10 expression was downregulated in bone marrow samples of AML patients and that ZCCHC10 expression was significantly and negatively correlated with the expression of the lncRNA SNHG1. Suppression of SNHG1 decreased ZCCHC10 promoter methylation and increased ZCCHC10 expression. Notably, there is a putative binding motif in SNHG1 with full complementarity to five sites surrounding the CpG island in the ZCCHC10 promoter. Overexpression of wild­type SNHG1 promoted ZCCHC10 methylation, but overexpression of SNHG1 with deletion of the binding motif did not. Further study identified that SNHG1 simultaneously bound to the ZCCHC10 promoter and the DNA methyltransferases DNMT1 and DNMT3B. These results indicated that SNHG1 recruits DNMT1 and DNMT3B to the ZCCHC10 promoter, resulting in hypermethylation of the ZCCHC10 promoter. Kaplan­Meier survival analysis showed that ZCCHC10 expression was positively associated with overall survival in AML patients. In vitro experiments demonstrated that ZCCHC10 increased p53 expression and suppressed AML cell proliferation and survival. In the xenograft mouse model, ZCCHC10 decreased the proliferation of leukemic cells, improved the survival of leukemic mice, and increased sensitivity to the BCL inhibitor venetoclax. In conclusion, ZCCHC10 expression is suppressed by SNHG1­induced DNA methylation in AML. Downregulation of ZCCHC10 decreases p53 activation, promotes cell proliferation and survival, and thereby accelerates AML progression and the acquisition of venetoclax resistance. The present study identified a SNHG1/ZCCHC10/p53 signaling axis in AML that may be a therapeutic target in this malignancy.


Asunto(s)
Leucemia Mieloide Aguda , ARN Largo no Codificante , Animales , Humanos , Ratones , Línea Celular Tumoral , Epigénesis Genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Nucleares/metabolismo
20.
Am J Emerg Med ; 68: 215.e3-215.e7, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024323

RESUMEN

Three days after being stung by wasps in a rural area, a 60-year-old man was admitted to the emergency department with headaches. The physical examination showed that the patient was conscious, had moderate pain, had four head and back stings with local edema and erythema around the wounds, and had a stiff neck. Brain computed tomography upon admission revealed no abnormalities. Following lumbar puncture, the patient was diagnosed with subarachnoid hemorrhage (SAH) induced by wasp stings. No obvious aneurysms were found by either computed tomography angiography or three-dimensional rotational angiography. He received symptomatic treatment including antiallergy medication (chlorpheniramine and intravenous hydrocortisone), nimodipine for possible vasospasm, fluid infusion, and mannitol for intracranial pressure reduction and was discharged on the 14th day. This case of wasp sting-induced SAH is being reported to improve doctors' diagnostic abilities when encountering patients with wasp stings. It is important for emergency physicians to be aware that patients stung by wasps may develop rare complications such as SAH. Hymenoptera-induced SAH is an example of such a case.


Asunto(s)
Mordeduras y Picaduras de Insectos , Hemorragia Subaracnoidea , Avispas , Masculino , Animales , Humanos , Persona de Mediana Edad , Mordeduras y Picaduras de Insectos/complicaciones , Hemorragia Subaracnoidea/etiología , Hemorragia Subaracnoidea/complicaciones , Cabeza , Cefalea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...